Sunday, April 9, 2017

Macam – macam Alat Navigasi Elektronik



Macam – macam Alat Navigasi Elektronik
1.  Radar
Pengertian Radar
Radar singkatan dari “Radio Detection and Ranging” adalah peralatan navigasi elektronik terpenting dalam pelayaran. Pada dasarnya radar berfungsi untuk mendeteksi dan mengukur jarak suatu obyek di sekeliling kapal. Disamping dapat memberikan petunjuk adanya kapal, pelampung, kedudukan pantai dan obyek lain disekeliling kapal, alat ini juga dapat memberikan baringan dan jarak antara kapal dan objek-objek tersebut.
Oleh karena itu radar sangat bermanfaat untuk mengetahui kedudukan kapal lain sehingga dapat membantu menghindari/ mencegah terjadinya tabrakan dilaut. Radar akan sangat berguna pada saat cuaca buruk, keadaan berkabut, dan berlayar di malam hari terutama apabila petunjuk pelayaran seperti lampu suar, pelampung, bukit atau bangunan visual tidak dapat diamati.
Kelebihan utama radar dibandingkan dengan alat navigasi elektronik lain adalah radar tidak memerlukan stasiun-stasiun pemancar.
Bagian-bagian Radar
 a)      Timer (trigger)
Bagian ini berfungsi untuk membangkitkan pulsa-pulsa yang bertegangan tinggi yang diteruskan pada modulator dan indikator dalam waktu yang sama. Untuk menyamakan waktu ini, maka diperlukan pengukur waktu yang berguna mengukur waktu pemancaran pulsa-pulsa radio yang dipancarkan itu.
b)     Modulator
Bagian ini berfungsi untuk memodulir gelombang radio (pulsanya) yang dipancarkan dan untuk memperkuat atau mempertinggi tegangan pulsa yang akan dipancarkan. Tegangan tinggi ini didapat dari tabung magnetron. Dengan demikian guna membangkitkan tegangan tinggi, pemancar harus dijalankan (dihidupkan) lebih dahulu (stand by)
c)      Pemancar (transmitter)
Memberikan energi yang besar pada pulsa-pulsa dalam bentuk yang disebut tenaga puncak (peak power) yang kemudian disalurkan ke penghantar gelombang (wafeguide) terus ke antena, dari antena pulsa itu disalurkan ke udara dalam bentuk elektron yang berputar. Bagian pemancar ini pada instalasi dikapal disatukan dalam satu kabin atau kotak.


d)     Penghubung TR dan Anti TR
Tenaga gelombang radio yang dipancarkan oleh bagian pemancar (transmitter) dan tenaga gema pulsa yang kembali dari sasaran melalui antena ke bagian penerima (receiver) sama-sama melalui penghantar gelombang yang sama. Untuk mengatur penyaluran energi pulsa ke antena dan dari antena penerima tersebut dilakukan secara berganti-ganti dengan menggunakan penghubung (swich) elektronik (neon) yang dinamakan TR dan anti TR swich (TR = Transit and Receive). Penghubung TR bertugas mencegah pulsa-pulsa yang bertegangan tinggi dari pemancar masuk ke bagian penerima yang sensitif terhadap tegangan tinggi. dengan demikian TR mencegah penerima dari kerusakan dan mencegah hilangnya energi yang dipancarkan (bila masuk ke bagian penerima). Anti TR menyalurkan energi gema-gema pulsa ke bagian penerima dan mencegah masuknya energi ini ke bagian pemancar.
e)      Bagian penerima (receiver)
Memisahkan (mendeteksi) dan memperkuat energi yang diterima dari sasaran. Hasil deteksi selubung getaran radio ini diperkuat disalurkan ke bagian penguat gambar (video amplifier) lalu diteruskan ke bagian indikator atau PPI unit.
f)       Bagian PPI (Plan Position Indikator)
Kadang-kadang disebut juga sebagai display unit, fungsinya untuk memperlihatkan sasaran gambar yang terkena pancaran pulsa dan menentukan arah serta jarak sasaran dalam azimut PPI dilengkapi dengan Tabung Sinar Katoda (Cathode Ray Tube) dan rangkaian yang disebut dasar waktu (time base) yang mengatur panjang atau lamanya sweep sesuai dengan jarak lamanya waktu yang digunakan.
g)      Bagian Antena
Antena terdiri dari tiga bagian khusus yaitu :
·     Motor yang memutar antena
·     Servo atau sinkro sistem yang terdiri dari generator sinkro (servo).
·     Pada antena yang mengatur putaran gir mikro swit pada antena dan motor sinrkonnya pada putaran pembelok TSK.
·     Mikro swit gunanya untuk menunjukkan cahaya haluan (heading plas) kecuali antena yang berbentuk parabol itu, ketiga bagian ini biasanya ditempatkan dalam satu kotak yang disebut pedestal.
 1.1. Prosedur Pengoperasian Radar
a)      Prosedur Menghidupkan (ON)
Pada prinsipnya prosedur penggunaan radar adalah sama untuk semua jenis radar dan prosedur penggunaan biasanya ada dalam buku manual operasi.
Sebelum memutar tombol utama dan tombol-tombol function pada posisi “ON” pastikan tombol-tombol pada panel radar berada pada posisi “OFF”/penuh berlawanan dengan arah jarum jam.
Setelah bagian tombol-tombol pada panel radar berada pada posisi sebagaimana di atas maka radar dapat kita hidupkan (pastikan bahwa antena dapat berputar dengan bebas). Kemudian dilanjutkan prosedur pengoperasian sebagai berikut :
1).  Perhatikan setting jarak tidak terlalu pendek
2)   Selaraskan kecerahan
3)   Selaraskan fokus dengan memperhatikan gelang jarak
4).  Selaraskan amplifikasi sampai berbentuk bintik-bintik kabur pada skrin
5).  Set garis jarak pada kisaran jarak yang rendah dan gunakan pemilihan frekuensi secara otomatis.
6).  Selaraskan penekanan gema laut untuk mendapatkan kontras yang baik
7).  Set switch jarak sesuai keperluan dan selaraskan lagi switch focus
8).  Pastikan gambar berada di tengah-tengah
9).  Set penanda haluan pada 0o atau pada haluan kapal sesuai tampilan yang akan digunakan.
10) Hal lain yang perlu diperhatikan sebelum pengoperasian radar adalah:
·Semua switch dalam kaeadan minimum
·Kekuatan listrik yang betul
·         Pastikan tidak ada orang disekitar antenna atau antenna betul-betul bebas dari hambatan seperti tali atau benda lain yang akan mengganggu perputaran antena.
b)      Prosedur Mematikan (Off) : Bila radar tidak akan digunakan dalam periode waktu yang panjang, putar tombol function dan antena pada posisi Off selanjutnya tombol-tombol yang lain putar pada posisi sebelum diaktifkan.
 1.2. Prinsip Kerja Radar
Seperti telah diketahui radar menggunakan prinsip pancaran gelombang radio dalam bentuk ‘microwave band’. Pulsa yang dihasilkan oleh unit pemancar (transmitter unit) dikirim ke antena melalui swich pemilih pancar/terima elektronik (T/R electronic switch). Pada saat pengiriman sinyal antena akan berputar 10 hingga 30 kali/menit dengan memancarkan denyutan/pulsa 500 hingga 3000 kali/detik. Ketika pemancaran, pulsa ini akan dipantulkan kembali apabila mengenai sasaran dalam bentuk gema radio (radio echo). Pulsa yang dipantulkan ini akan diterima kembali oleh antena dan dikirim ke unit penerima (receiver) melalui switch pemilih pancar/terima. Pulsa ini akan di kuatkan dan akan dideteksi dalam bentuk sinyal radio yang seterusnya dibesarkan lagi kekuatannya pada indicator.
Setiap kali gelombang elektrik dipancarkan, bintik-bintik putih akan terbentang dari pusat skrin/skop radar dengan kecepatan konstan dan akan membuat garis sapuan. Garis sapuan ini akan bergerak disekeliling pusat skop dan berputar searah jarum jam dimana putarannya selaras dengan putaran antena. Apabila sinyal video (video signal) digunakan dalam indikator, bintik putih diatas garis sapuan ini akan diubah kedalam bentuk gambar/bayang-bayang. Posisi gambar ini akan sejalan dengan arah gelombang elektrik yang dipancarkan serta jarak posisi gambar ini dengan pusat skop radar adalah berdasarkan jarak kapal dengan sasaran di suatu tempat. Dengan demikian posisi penerima sinyal kapal senantiasa berada di pusat skop pada tabung sinar katoda dan dikelilingi oleh objek/sasaran.
 2.        GPS
 Pengertian GPS
GPS adalah sistem radio navigasi dan penentuan posisi menggunakan satelit. Nama formalnya adalah NAVSTAR GPS kependekan dari NAVigation Satellite and Ranging Global Positioning System.
Dalam hal penentuan posisi, GPS dapat memberikan ketelitian posisi yang spektrumnya cukup luas. Dari yang sangat teliti sampai yang biasa- biasa saja. Ketelitian posisi yang diperoleh secra umum akan bergantung pada empat faktor, yaitu :
1).        Metode penentuan posisi yang digunkan
2)         Geometri dan distribusi dari satelit – satelit yang diamati.
3).        Ketelitian data yang digunakan.
4).        Strategi / metode pengolahan data yang diterapkan.
Selain memeberikan informasi tentang waktu, GPS juga dapat digunakan untuk mentransfer waktu dari satu tempat ke tempat lain. Ketelitian sampai beberapa nanodetik dapat diberikan oleh GPS untuk transfer waktu antar benua.
 2.1 Pengoperasian GPS
GPS mempunyai beberapa macam (model) seperti VALSAT – 021, namun secara umum prinsip dasar pengoperasiannya adalah relative sama dan yang membedakannya adalah tipe dan merek GPS receiver yang bersangkutan. Prosedur pengoperasian GPS model VALSAT 021 adalah sebagai berikut.
a)      Menghidupkan Unit GPS
Sebelum menghidupkan GPS kita harus mengetahui posisi duga saat
pengoperasian. Secara prinsip pengoperasian GPS sangatlah mudah dengan urut-urutan sebagai berikut:
·      Tekan ON/ OFF untuk menghidupakn
·      Atur kecerahan cahaya dilayar tampilan
·      Untuk mematikan perangkat, tekan kunci ON /OFF selama 3 detik
b)     Mengoperasikan Navigator
1)      Self Localization
GPS dengan mudah dapat memberikan informasi mengenai posisi kita dipermukaan bumi disertai dengan waktu, dan kalender. GPS mencari sinyal satelit pertama, dan saat itu juga dipergunakan untuk pembaruan data tentang waktu dan kalender (update). Pencaraian sinyal–sinyal satelit ini dipergunakan untuk
memperbaharui data mengenai waktu dan kalender. Proses ini memerlukan waktu rata – rata 15 menit.
2)      Memasukan Posisi Perkiraan
Diperlukan waktu beberapa menit untuk mendapatkan posisi yang kemudian dimasukan sebagai posisi perkiraan.
1.   tekan kunci POS, kordinat Lat/Lon ditampilkan pada layar. POS 1 akan berkedip selama GPS tidak terkunci.
2.   Tekan kunci LNI, karakter pertama dari lat/ lintang akan berkedip
·      Tekan +/- untuk memilih Utara / Selatan ( N/ S )
·      Masukan data Lat / Lintang
·      Dilihat bahwa karakter pertama dari lon/ bujur apakah sudah berkedip.
·      Tekan +/- untuk memilih Timur / Barat ( E / W )
POS 1 berhenti berkedi saat GPS terkunci.
3)      Pemilihan sistem Geodesi
·        Tekan ( +/- ) menuju ketampilan fungsi kedua.
·        Tekan “6” untuk mendapatkan fungsi F6, kemudian ENT.
·        Tekan ? untuk memilih sistem Geodesi, kemudian ENT.
Setiap sistem geodesi memberikan perhitungan mengenai posisi lat/lon yang berbeda.
4)      Pengenalan tentang ketinggian antena
·        Tekan  POS 1 muncul dilayar tampilan.
·        Tekan 2 untuk menampilkan POS 2.
·        Tekan ENT untuk memasukan data ketinggian antena dalam sistem. Yang dimaksud ketinggian disini adalah ketinggian antena terhadap rata – rata permukaan laut.
c)      Mendapatkan posisi
·        Tekan POS
·        POS 1 muncul dilayar tampilan.
·        Posisi ini selalu diperbaharui / dikoreksi setiap 1 detik.
·        XY atau XYZ menunjukan operasi dalam 2 atau 3 dimensi.
·        Indikator “POS 1 “ akan tetap saat GPS dikunci
d)     Menentukan Kecepatan dan Arah.
·        Tekan NAV
·        Nav 1 akan mumcul dilayar tampilan.
·        Baris pertama menunjukan kecepatan dalam knots.
·        Baris kedua menunjukan arah dalam derajat.
e)      Memasukan Titik Posisi (Waypoint)
·        Tekan WPT.
·        WPT 1 akan muncul dilayar tampilan
·        Masukan nomor titik posisi. Nomor ini ditampilkan pada baris kedua, di bawah huruf WPT
·        Tekan ENT
Karakter pertama untuk latitude (lintang) akan berkedip
(menandakan siap untuk memasukan data ).
·        Tekan +/- untuk pilihan N ( utara ) atau S ( selatan ).
·        Masukan koordinat lintang ( lititude )
·        Kemudian periksa, karakter pertama dari bujur ( longitude ) akan berkedip (menandakan siap untuk memasukan data)
·        Tekan +/- untuk pilihan E ( timur ) atau W ( barat )
·        Masukan koordinat bujur.
·        Tekan ENT.
f)       Pemberian nama setiap titik posisi (Waypoint)
·      Tekan WPT
·      WPT 1 akan muncul dilayar tampilan.
·      Tekan ?
·      Pilih nomor titik posisi ( waypoint )
·      Tekan ENT. Karakter pertama akan berkedip.
·      Tekan kunci (angka), yang berkenaan dengan huruf pertama dan tekan +/- untuk memilih huruf yang diinginkan.
·      Tulis sesuai yang dikehendaki.
g)      Menghapus titik posisi (waypoint ) dan namanya.
·        Tekan WPT.
·        WPT 1 akan muncul dilayar tampilan.
·        Masukan nomor titik posisi ( waypoint ).
·        Tekan ENT
·        Tekan Nav, sekarang posisi adalah
ü  00o 00’ 000N
ü  00o 00’ 000E
ü  dan namanya juga ikut terhapus.
·      Tekan ENT
h)     Memasukan koordinat saat ini kedalam titik posisi ( waypoint ) secara otomatis.
·        Tekan WPT
·        WPT 1 akan muncul dilayar
·        Masukan nomor titik posisi ( waypoint )
·        Tekan ENT POS ENT
·        Posisi saat ini secara otomatis tersimpan didalam titik posisi (waypoint) sesuai nomor waypoint yang kita isikan.
3.  RDF
Pengertian RDF
RDF (Radio Direction Finder) adalah pesawat radio pencari arah yang dioperasikan melalui penerimaan gelombang elektromagnetik oleh pemancar yang dipancarkan oleh stasiun pemancar.
Prinsip Kerja RDF
Antena pesawat Radio Direction Finder (RDF) akan menerima gelombang elektromagnetik yang dipancarkan oleh stasion pemancar. Oleh karena antena itu merupakan suatu penghantar yang baik maka gelombang elektromagnetik dari pemancar yang diterima oleh antena akan membangkitkan arus gelombang yang getarannya sama dengan getaran gelombang elektromagnetik dari pemancar.
Bila bidang bingkai antena searah dengan arah datangnya isyarat dari pemancar maka tegangan yang dijangkitkan dalam antena akan maksimum dan bila bidang bingkai antena diputar 90o tidak searah lagi dengan arah datangnya isyarat maka tidak ada tegangan yang terjangkit dalam antenna dan isyarat tidak akan terdengar isyarat yang diterima oleh antenna diteruskan ke kotak penerima dan arah pemancar akan berada pada suara yang terkeras. Karena petunjuk arah dihubungkan dengan antena maka arah datangnya isyarat dapat dibaca pada indikatornya.
Pada sistem dua bingkai, bingkai yang satu mengarah ke haluan dan buritan sedangkan yang lain ke sisi iri dan kanan pada kapal. Ujung masing-masing bingkai dihubungkan pada dua buah kumparan yang terpisahkan dan berkedudukan tegak lurus satu sama lain di dalam pesawat penerima. Bila pemancar berada antara dua bingkai itu maka kedua bingkai itu akan menghasilkan tegangan yang menimbulkan medan magnit. Tiap medan magnit akan menggambarkan sebagai vektor, jumlah vektor itulah menunjukkan arah tempat di mana pemancar berada.
      Pengoperasian RDF
Menghidupkan atau mematikan dan mengoperasikan atau menggunakan
pesawat R.D.F pada prinsipnya sama dengan peralatan radio lainnya.
Cara menghidupkan :
·        Hubungkan pesawat dengan jala-jala listrik agar pesawat mendapat tenaga dengan menempatkan switch pada kedudukan ON.
·        Tunggu beberapa menit sampai pesawat mendapat panas yang cukup dan kemudian tempatkan power switch pada keduudkan yang dikehendaki menurut jumlah voltage yang masuk.
·        Tombol-tombol diatur pada kedudukan yang diperlukan untuk mendapat arah stasionnya.
Menggunakan pesawat R.D.F
Sebelum mengoperasikan/menggunakan pesawat R.D.F harus hafal namanama tombol serta kegunaannya. Hal ini adalah untuk memudahkan dalam mengoperasikannya.
·        Letakkan power switch pada kedudukan 1,2,3 menurut jumlah voltage yang masuk.
·        Letakkan sistem switch pada kedudukan receiver.
·        Tempatkan band switch pada band yang dikehendaki kalau untuk radio beacon tempatkan pada band 1 dan kalau untuk broad cast tempatkan pada band 2.
·        Letakan wave form switch menurut mode isyarat yang dikehendaki
(lihat kegunaan masing-masing kedudukan).
·        Carilah frekuensi gelombang radio yang akan dibaring dengan menggunakan tombol tuning.
·      Tombol auto frekuensi gain dan receiver frekuensi diatur sampai mendapatkan volume suara yang baik.
·      Apabila diagram angka delapan yang terlihat pada tabir terlampau pendek, maka tombil radius diatur pelan-pelan sampai panjang yang dikehendaki.
·      Dalam mendapatkan diagram angka delapan diusahakan sampai dapat membentuk satu garis lurus dengan menggunakan tombol fine control.
Cara mematikan :
Untuk mematikan RDF setelah digunakan maka tombol-tombol seperti AF gain, RF gain radius ditempatkan pada kedudukan minimum.
 4.   Echosounder
Definisi Echosounder
Sebuah echosounder ilmiah adalah perangkat yang menggunakan teknologi SONAR untuk pengukuran bawah air fisik dan biologis komponen-perangkat ini juga dikenal sebagai SONAR ilmiah. Aplikasi termasuk batimetri, klasifikasi substrat, studi vegetasi air, ikan, dan plankton, dan diferensiasi massa air.
Echosounder merupakan salah satu teknik pendeteksian bawah air. Dalam aplikasinya, Echosounder menggunakan instrument yang dapat menghasilkan beam (pancaran gelombang suara) yang disebut dengan transduser. Echosounder adalah alat untuk mengukur kedalaman air dengan mengirimkan tekanan gelombang dari permukaan ke dasar air dan dicatat waktunya sampai echo kembali dari dasar air.
   Bagian-Bagian Echosounder
1).  Time Base
Time base berfungsi sebagai penanda pulsa listrik untuk mengaktifkan pemancaran pulsa yang akan dipancarkan oleh transmitter melalui transducer. Suatu perintah dari time base akan memberikan saat kapan pembentuk pulsa bekerja pada unit transmitter dan receiver.
2).  Transmiter
Transmitter berfungsi menghasilkan pulsa yang akan dipancarkan. Suatucperintah dari kotak pemicu pulsa pada recorder akan memberitahukan kapan pembentuk pulsa bekerja. Pulsa dibangkitkan oleh oscillator kemudian diperkuat oleh power amplifier, sebelum pulsa tersebut disalurkan ke transducer
3).  Transducer
Fungsi utama dari transducer adalah mengubah energi listrik menjadi energi suara ketika suara akan dipancarkan ke medium dan mengubah energi suara menjadi energi listrik ketika echo diterima dari suatu target. Selain itu fungsi lain dari transducer adalah memusatkan energi suara yang akan dipantulkan sebagai beam.
Pulsa ditransmisikan secara bersamaan oleh keempat kuadran tetapi sinyal diterima oleh masing-masing kuadran dan diproses secara terpisah. Keempat kuadran diberi label a – d. Sudut θ pada satu bidang dibedakan oleh perbedaan fase (a – b) dan (c – d), jumlah sinyal (a + c) dibandingkan dengan jumlah sinyal (b + d). Sudut φ di dalam bidang tegak lurus terhadap yang pertama adalah sama dibedakan oleh perbedaan fase antara (a + b) dan (c + d). Kedua sudut tersebut mendefinisikan arah target yang spesifik (MacLennan dan Simmonds, 2005).
Kesulitan yang dihadapi untuk mengeliminir faktor beam pattern dapat diatasi dengan menggunakan split beam method. Metode ini menggunakan receiving transducer yang dibagi menjadi 4 kuadran. Pemancaran gelombang suara dilakukan dengan full beam yang merupakan penggabungan dari keempat kuadran dalam pemancaran secara simultan. Selanjutnya, sinyal yang memancar kembali dari target diterima oleh masing-masing kuadran secara terpisah, output dari masing-masing kuadran kemudian digabungkan lagi untuk membentuk suatu full beam dengan 2 set split beam. Target tunggal diisolasi dengan menggunakan output dari full beam sedangkan posisi sudut target dihitung dari kedua set split beam.
Transducer dengan sistem akustik split beam ini pada prinsipnya terdiri dari empat kuadran yaitu Fore, Aft, Port dan Starboard transducer. Transducer split beam memiliki beam yang sangat tajam (100) dan mempunyai kemampuan menentukan posisi target dalam bentuk beam suara dengan baik yaitu dengan mengukur beda fase dari sinyal echo yang diterima oleh kedua belah transducer (Simrad, 1993).
4).  Reciever
Receiver berfungsi menerima pulsa dari objek dan display atau recorder sebagai pencatat hasil echo. Sinyal listrik lemah yang dihasilkan oleh transducer setelah echo diterima harus diperkuat beberapa ribu kali sebelum disalurkan ke recorder. Selama penerimaan berlangsung keempat bagian transducer menerima echo dari target, dimana target yang terdeteksi oleh transducer terletak dari pusat beam suara dan echo dari target akan dikembalikan dan diterima oleh keempat bagian transducer pada waktu yang bersamaan
Split beam echosounder modern memiliki fungsi Time Varied Gain (TVG) di dalam sistem perolehan data akustik. TVG berfungsi secara otomatis untuk mengeliminir pengaruh attenuasi yang disebabkan oleh geometrical sphreading dan absorpsi suara ketika merambat di dalam air.
5).  Recorder
Recorder berfungsi untuk merekam atau menampilkan sinyal echo dan juga berperan sebagai pengatur kerja transmitter dan mengukur waktu antara pemancaran pulsa suara dan penerimaan echo atau recorder memberikan sinyal kepada transmitter untuk menghasilkan pulsa dan pada saat yang sama recorder juga mengirimkan sinyal ke receiver untuk menurunkan sensitifitasnya (FAO, 1983).
5.    AIS
Pengertian AIS
Automatic Identification System ( AIS ) adalah sistem pelacakan kapal jarak pendek, digunakan pada kapal dan Stasiun Pantai untuk mengidentifikasi dan melacak kapal dengan menggunakan pengiriman data elektronik dengan kapal lainnya dan stasiun pantai terdekat. Informasi seperti identifikasi posisi, tujuan, dan kecepatan dapat ditampilkan pada layar komputer atau ECDIS ( Electronic Charts Display and Information System ).AIS ditujukan untuk membantu awak kapal dalam bernavigasi dan memungkinkan pihak berwenang maritim untuk melacak dan memantau gerakan kapal, Sistem AIS  terintegrasi dari  Radio VHF transceiver standar dengan Loran-C atau Global Positioning System ( GPS), dan dengan  sensor navigasi elektronik lainnya, seperti gyrocompass  dan lain-lain.Untuk aturannya AIS sendiri International Maritime Organization ( IMO ) sudah membuat  suatu aturan yaitu Regulation 19 of SOLAS Chapter V yang berisi tentang pemasangan AIS dimana  kapal-kapal diwajibkan untuk memasang perangkat AIS transponder terutama pada kapal penumpang, kapal tangker dan kapal berukuran 300 Gross Tonnage keatas. Peraturan tersebut juga memuat tentang keharusan AIS untuk menyediakan data informasi berupa  identitas kapal, jenis kapal, posisi, tujuan, kecepatan, status navigasi dan informasi lainnya yang berhubungan dengan keselamatan pelayaran.
 AIS yang digunakan pada peralatan navigasi yang penting untuk menghindari dari kecelakaan akibat tabrakan. Karena keterbatasan dari kemampuan radio, dan karena tidak semua kapal yang dilengkapi dengan AIS, sistem ini berarti yang diutamakan untuk digunakan sebagai alat peninjau dan untuk menghindarkan resiko dari tabrakan daripada sebagai sistem pencegah tabrakan secara otomatis, sesuai dengan International Regulations for Preventing Collisions at Sea (COLREGS).
Persyaratan AIS hanya untuk menampilkan dasar teks informasi, data yang berlaku dapat diintegrasikan dengan sebuah graphical electronic chart atau sebuah tampilan radar, menyediakan informasi navigasi gabungan pada sebuah tampilan tunggal.
 Vessel Traffic Service
Saat perairan dan pelabuhan ramai, Vessel Traffic Service (VTS) boleh ada dalam mengatur lalu lintas kapal. Sekarang, AIS menyediakan kesadaran akan lalu lintas
tambahan dan menyediakan pelayanan dengan informasi tentang keberadaan kapal lain dan alur lintasannya.
 Aids to Navigation
AIS telah berkembang dengan kemampuan dalam menyampaikan informasi mengenai posisi serta nama suatu kapal, yakni dapat melayani pengiriman pertolongan navigasi dan menandai posisi kapal. Bantuan ini dapat dilokasikan di pantai, misanya pada sebuah mercusuar, atau pada air, pada platform atau pelampung. Penjaga pantai Amerika Serikat (The US Coast Guard) mengusulkan bahwa AIS boleh diganti RACON, atau rambu radar, baru-baru ini digunakan untuk bantuan navigasi elektronik.
Kemampuan pada bantuan menyiarkan navigasi juga telah membuat konsep berupa Virtual AIS, disebut juga sebagai Synthetic AIS atau Artificial AIS. Istilah tersebut dapat diartikan 2 kasus; pada kasus pertama, sebuah transmisi AIS mendeskripsikan posisi nyata tetapi signalnya tersebut berasal dari sebuah lokasi penerima di tempat lain. Contohnya, pada stasiun pantai yang menyiarkan posisi, 10 floating channel markers, dimana masing-masing stasiun amat kecil untuk menampung penerima itu sendiri. Pada kasus kedua, hal tersebut dapat diartikan bahwa transmisi AIS mengindikasikan sebuah penandaan yang dimana tidak terlihat secara fisik, atau menyangkut sebuah penandaan suatu benda yang tidak terlihat (Karang di bawah permukaan laut atau kapal yang tenggelam).
 Search and Rescue
Berfungsi untuk menentukan suatu posisi dalam pengoperasian Marine Search & Rescue, hal ini sangat berguna untuk mengetahui letak dan status navigasi dari suatu kapal atau orang yang membutuhkan pertolongan. Sekarang AIS dapat memberikan tambahan informasi dan sumber perhatian pada layar operasi, meskipun jarak AIS dibatasi pada jarak radio VHF. Standar AIS juga menginginkan pemakaian tepat pada SAR Aircraft dan memberikan sebuah pesan (AIS Message 9) untuk Aircraft pada keberadaan posisi. Kegunaan aircraft dan vessels SAR pada lokasi keadaan bahaya terdapat alat AIS-SART AIS Search abd Rescue Transmitter yang baru-baru ini sedang dikembangkan oleh International Electronical Commission (IEC), standar dijadwalkan untuk diselesaikan pada akhir tahun 2008 dan AIS-SART akan diperoleh di pasar mulai tahun 2009.
Binary Message
Saint Lawrence Seaway menggunakan pesan kembar atau dikenal dengan nama AIS binary message (message tipe 8) untuk memberikan informasi tentang level air, tata tertib pintu air, dan cuaca pada sistem kenavigasian itu sendiri.
Computing dan networking
Beberapa program computer telah dibuat untuk digunakan bersamaan AIS data. Beberapa program menggunakan sebuah computer untuk memodulasi pendengaran yang murni dari sebuah alat konvensional, marine VHF radio telephone, yang diperbaiki untuk AIS broadcast frequency (Channel 87 and 88) ke dalam AIS data. Beberapa program dapat mengirim ulang informasi AIS ke jaringan lokal atau global yang menyediakan otoritas pengguna atau publik untuk mengobservasi lalu lintas kapal dari suatu jaringan lainnya. Beberapa tampilan program data AIS dikirim dari sebuah pengirim resmi AIS ke dalam sebuah computer atau chartplotter. Kebanyakkan dari beberapa program tidak berupa AIS transmitter, oleh karenanya peralatan tersebut tidak akan memberitahu posisi kapal anda tetapi mungkin dapat digunakan sebagai alternative yang relatif murah bagi kapal kecil untuk memberikan bantuan navigasi dan menghindari tabrakan dengan kapal yang lebih besar yang diharuskan untuk memberitahu posisinya. Pemakai kapal juga menggunakan penerima (receiver) untuk menemukan dan mengontrol kapal dan menambahkan koleksi dokumen.
 Concern over web-based data
Pada bulan desember 2004, IMO menyalahkan penggunaan data secara bebas yang tidak bertanggung jawab dengan pernyataan berikut.
Dalam hubungannya untuk mengumumkan ketersediannya informasi AIS secara gratis, data kapal yang dikembangkan pada website, publikasi pada website atau transnisi data AIS lainnya bisa mengancam keselamatan dan keamanan kapal dan fasilitas pelabuhan dan menghambat usaha organisasi beserta anggotanya dal upaya meningkatkan keselamatan navigasi dan keamanan sector kelautan internasional.
 Cara kerja AIS
Transponder AIS menayangkan informasi secara otomatis, seperti posisi, kecepatan, dan status navigasi pada interval waktu tertentu melalui transmitter VHF yang terpasang pada transponder. Informasi tersebut diambil langsung dari sensor navigasi kapal, khusussnya dari penerima GNSS dan gyrocompasnya. Informasi lain, seperi nama kapal dank kode pemanggil VHF di program ketika memasang peralatan juga ditransmisikan secara berkala. Sinyal tersebut diterima oleh transponder AIS yang dipasang papa kapal atau di darat bergantung pada sistemnya, seperti pada sistem VTS. Informasi yang diterima dapat ditampilkan pada sebua layar atau plot grafik yang menunjukkan posisi kapal lain dengan tampilan sesua yang terdapat pada layar radar.
Standar AIS menjelaskan 2 kelas unit AIS:
·      Kelas A, digunakan pada kapal-kapal yang tercantum dalam SOLAS Chapter V(dan kapal lain di beberapa negara)
·      Kelas B, menggunakan daya yang kecil, biaya yang relativ murah untuk penggunaan pasar non-SOLAS.
Varisai-variasi yang lain saat ini sedang dalam pengembangan dan di khususkan untuk penggunaan di stasiun, pertolongan navigasi darura dan SAR, yang mana peralatan tersebut akan menjadi pengganti dari peralatan sebelumnya.
Khusus untuk kelas A, transponder AIS ini terdiri dari sebuah transmitter VHF, 2 penerima VHF TDMA, satu penerima VHF DSC, penghubung menuju display dan sistem sensor menggunakan komunikasi elektronik berstandar maritime (seperti NMEA 0183, yang dikenal dengan IEC 61162). Pengalokasian waktu menjadi bagian yang sangat vital untuk proses sinkronisasi yang baik dan pemetaan untuk kelas A. Oleh karena itu, setiap unit diharuskan memiliki penerima GPS internal.
 Dunia kemaritim, Navigasi atau penuntun arah mempunyai peranan yang sangat penting, karena digunakan sebagai penunjuk jalan bagi keluar masuk kapal di pelabuhan dengan aman dan lancar, untuk itu kami ambil garis kesimpulan sebagai berikut terkait dengan Navigasi Pelayaran  yaitu, mengetahui jenis dan fungsi alat navigasi sangat penting, hal ini dikarenakan banyaknya bahaya navigasi yang dapat mengancam keselamatan pelayaran, dan untuk menghindarinya dibutuhkan pengetahuan tentang alat-alat navigasi untuk menentukan alat mana yang harus digunakan pada saat terjadi suatu bahaya navigasi.
beberapa fungsi alat navigasi pada paper ini adalah, GPS diperlukan untuk menentukan posisi kapal, Radar digunakan untuk melihat keadaan di sekitar kapal pada jarak yang sudah ditentukan sebelumnya, AIS digunakan untuk mengidentifikasi kapal yang sedang mendekati kapal kita, RDF untuk mencari arah gelombang radio dan dapat juga digunakan sebagai penanda pada kapal penangkap ikan.
sebelum kita melihat apa saja alat navigasi kapal terlebih dahulu kita harus mengetahui apa yang dimaksud dengan navigasi.
Navigasi adalah penentuan posisi dan arah perjalanan baik di medan sebenarnya atau di peta, dan oleh sebab itulah pengetahuan tentang kompas dan peta, radar, arpa, GMDSS, live saving equipment, dan buku buku publikasi serta teknik penggunaannya haruslah dimiliki dan dipahami.
Sebelum kompas ditemukan, navigasi dilakukan dengan melihat posisi benda-benda langit seperti matahari dan bintang-bintang dilangit, yang tentunya bermasalah kalau langit sedang mendung. kapal kapal sekarang sudah canggig canggih baik dari system elektronik yg terus bermunculan sehingga mempermudahkan kita dalam menentukan posisi kapal. tapi alat alat tradisional yg di ajarkan Bpk. ML Palumian jgn di lupakan karena suatu saat pasti kita harus mempergunakannya. banyak buku buku yg terbit oleh Captain captain senior kita yg mengajarkan cara melayari kapal dgn baik.  salah satunya adalah perangakat navigasi, semua pelaut harus mengenal dan dapat menggunakannya semaksimal mungkil agar tercapai keselamatan dalam rute pelayarannya,  apalagi adik adik kita yg masi taruna mereka wajib hukumnya. salah satu alat alat tersebut sebagai berikut:
1.Peta merupakan perlengkapan utama dalam pelayaran penggambaran dua dimensi (pada bidang datar) keseluruhan atau sebagian dari permukaan bumi yang diproyeksikan dengan perbandingan/skala tertentu
atau dengan kata lain representasi dua dimensi dari suatu ruang tiga dimensi. Ilmu yang mempelajari pembuatan peta disebut kartografi.
Proyeksi peta menurut jenis bidang proyeksi dibedakan :
Proyeksi bidang datar / Azimuthal / Zenithal
Proyeksi Kerucut
Proyeksi Silinder
Proyeksi peta menurut kedudukan bidang proyeksi dibedakan :
Proyeksi normal
Proyeksi miring
Proyeksi transversal
Proyeksi peta menurut jenis unsur yang bebas distorsi dibedakan :
Proyeksi conform, merupakan jenis proyeksi yang mempertahankan besarnya sudut, Proyeksi equidistant, merupakan jenis proyeksi yang mempertahankan besarnya panjang jarak, sedang Proyeksi equivalent, merupakan jenis proyeksi yang mempertahankan besarnya luas suatu daerah pada bidang lengkung
2. Kompas adalah alat penunjuk arah yang selalu menunjuk kearah Utara, dengan melihat arah Utara-Selatan pada Kompas dan dengan membandingkannya dengan arah Utara Peta kita sudah dapat mengorientasikan posisi pada peta
Kompas adalah alat navigasi untuk mencari arah berupa sebuah panah penunjuk magnetis yang bebas menyelaraskan dirinya dengan medan magnet bumi secara akurat. Kompas memberikan rujukan arah tertentu, sehingga sangat membantu dalam bidang navigasi. Arah mata angin yang ditunjuknya adalah utara, selatan, timur, dan barat. Apabila digunakan bersama-sama dengan jam dan sekstan, maka kompas akan lebih akurat dalam menunjukkan arah. Alat ini membantu perkembangan perdagangan maritim dengan membuat perjalanan jauh lebih aman dan efisien dibandingkan saat manusia masih berpedoman pada kedudukan bintang untuk menentukan arah.
Alat apa pun yang memiliki batang atau jarum magnetis yang bebas bergerak menunjuk arah utara magnetis dari magnetosfer sebuah planet sudah bisa dianggap sebagai kompas. Kompas jam adalah kompas yang dilengkapi dengan jam matahari. Kompas variasi adalah alat khusus berstruktur rapuh yang digunakan dengan cara mengamati variasi pergerakan jarum. Girokompas digunakan untuk menentukan utara sejati.
Lokasi magnet di Kutub Utara selalu bergeser dari masa ke masa. Penelitian terakhir yang dilakukan oleh The Geological Survey of Canada melaporkan bahwa posisi magnet ini bergerak kira-kira 40 km per tahun ke arah barat laut.
Berikut ini adalah arah mata angin yang dapat ditentukan kompas.
Utara (disingkat U atau N)
Barat (disingkat B atau W)
Timur (disingkat T atau E)
Selatan (disingkat S)
Barat laut (antara barat dan utara, disingkat NW)
Timur laut (antara timur dan utara, disingkat NE)
Barat daya (antara barat dan selatan, disingkat SW)
Tenggara (antara timur dan selatan, disingkat SE)
3. GPS Salah satu perlengkapan modern untuk navigasi adalah Global Positioning Satelite/GPS adalah perangkat yang dapat mengetahui posisi koordinat bumi secara tepat yang dapat secara langsung menerima sinyal dari satelit. Perangkat GPS modern menggunakan peta sehingga merupakan perangkat modern dalam navigasi di darat, kapal di laut, sungai dan danau serta pesawat udara
Global Positioning System (GPS) adalah satu-satunya sistem navigasi satelit yang berfungsi dengan baik. Sistem ini menggunakan 24 satelit yang mengirimkan sinyal gelombang mikro ke Bumi. Sinyal ini diterima oleh alat penerima di permukaan, dan digunakan untuk menentukan posisi, kecepatan, arah, dan waktu. Sistem yang serupa dengan GPS anatara lain GLONASS Rusia, Galileo Uni Eropa, IRNSS India.
Sistem ini dikembangkan oleh Departemen Pertahanan Amerika Serikat, dengan nama lengkapnya adalah NAVSTAR GPS (kesalahan umum adalah bahwa NAVSTAR adalah sebuah singkatan, ini adalah salah, NAVSTAR adalah nama yang diberikan oleh John Walsh, seorang penentu kebijakan penting dalam program GPS).[1] Kumpulan satelit ini diurus oleh 50th Space Wing Angkatan Udara Amerika Serikat. Biaya perawatan sistem ini sekitar US$750 juta per tahun,[2] termasuk penggantian satelit lama, serta riset dan pengembangan.
4. Radar sangat bermanfaat dalam navigasiKapal laut dan kapal terbang modern sekarang dilengkapi dengan radar untuk mendeteksi kapal/pesawat lain, cuaca/ awan yang dihadapi di depan sehingga bisa menghindar dari bahaya yang ada di depan pesawat/kapal.
Radar (dalam bahasa Inggris merupakan singkatan dari radio detection and ranging, yang berarti deteksi dan penjarakan radio) adalah sistem yang digunakan untuk mendeteksi, mengukur jarak dan membuat map benda-benda seperti pesawat dan hujan. Istilah radar pertama kali digunakan pada tahun 1941, menggantikan istilah dari singkatan Inggris RDF (Radio Directon Finding). Gelombang radio kuat dikirim dan sebuah penerima mendengar gema yang kembali. Dengan menganalisa sinyal yang dipantulkan, pemantul gema dapat ditentukan lokasinya dan kadang-kadang ditentukan jenisnya. Walaupun sinyal yang diterima kecil, tapi radio sinyal dapat dengan mudah dideteksi dan diperkuat.
Gelombang radio radar dapat diproduksi dengan kekuatan yang diinginkan, dan mendeteksi gelombang yang lemah, dan kemudian diamplifikasi( diperkuat ) beberapa kali. Oleh karena itu radar digunakan untuk mendeteksi objek jarak jauh yang tidak dapat dideteksi oleh suara atau cahaya. Penggunaan radar sangat luas, alat ini bisa digunakan di bidang meteorologi, pengaturan lalu lintas udara, deteksi kecepatan oleh polisi, dan terutama oleh militer.
A maritime radar with Automatic Radar Plotting Aid (ARPA) kemampuan dapat membuat trek menggunakan kontak radar . Sistem ini dapat menghitung kursus objek dilacak , kecepatan dan titik terdekat pendekatan ( CPA ) , sehingga tahu jika ada bahaya tabrakan dengan kapal atau daratan lainnya .
A ARPA khas memberikan presentasi dari situasi saat ini dan menggunakan teknologi komputer untuk memprediksi situasi masa depan . Sebuah ARPA menilai risiko tabrakan , dan memungkinkan operator untuk melihat manuver yang diusulkan oleh ship.While sendiri berbagai model ARPAs yang tersedia di pasar , fungsi berikut biasanya tersedia :
a . Benar atau relatif presentasi gerak radar .
b . Akuisisi otomatis target ditambah akuisisi manual. Digital membaca-out target diakuisisi yang menyediakan kursus , kecepatan, jangkauan , bantalan , titik terdekat pendekatan ( CPA , dan waktu untuk CPA ( TCPA ) .
c . Kemampuan untuk menampilkan informasi penilaian tabrakan langsung pada PPI , dengan menggunakan vektor ( benar atau relatif) atau sekitar Diprediksi grafis Danger ( PAD ) display .
d . Kemampuan untuk melakukan manuver uji coba , termasuk perubahan tentu saja , perubahan kecepatan , dan dikombinasikan perubahan kursus / kecepatan . Stabilisasi tanah otomatis untuk keperluan navigasi .
e . ARPA memproses informasi radar jauh lebih cepat daripada radar konvensional namun masih tunduk pada pembatasan yang sama .
f . Data ARPA hanya seakurat data yang berasal dari input seperti giro dan kecepatan log .
5. Telegraf merupakan sebuah mesin untuk mengirim dan menerima pesan pada jarak jauh, mengunakan Kode Morse dengan frekwensi gelobang radio, kode morse adalah metode dalam pengiriman informasi, dengan menggunakan standard data pengiriman nada atau suara,cahaya dengan membedakan ketukan dash dan dot dari pesan kalimat, kata,huruf, angka dan tanda baca. Kode morse dapat dikirimkan melalui peluit,bendera, cahaya, dan ketukan morse.

6. Sonar (Singkatan dari bahasa Inggris: sound navigation and ranging), merupakan istilah Amerika yang pertama kali digunakan semasa Perang Dunia, yang berarti penjarakan dan navigasi suara, adalah sebuah teknik yang menggunakan penjalaran suara dalam air untuk navigasi atau mendeteksi kendaraan air lainnya. Sementara itu, Inggris punya sebutan lain untuk sonar, yakni ASDIC (Anti-Submarine Detection Investigation Committee. Sonar merupakan sistem yang menggunakan gelombang suara bawah air yang dipancarkan dan dipantulkan untuk mendeteksi dan menetapkan lokasi obyek di bawah laut atau untuk mengukur jarak bawah laut. Sejauh ini sonar telah luas digunakan untuk mendeteksi kapal selam dan ranjau, mendeteksi kedalaman, penangkapan ikan komersial, keselamatan penyelaman, dan komunikasi di laut.
Cara kerja perlengkapan sonar adalah dengan mengirim gelombang suara bawah permukaan dan kemudian menunggu untuk gelombang pantulan (echo). Data suara dipancar ulang ke operator melalui pengeras suara atau ditayangkan pada monitor.
7. EPIRB cara kerja melalui Cospas-Sarsat merupakan sistem search and Rescue (SAR) berbasis satelit internasional yang pertama kali digagas oleh empat negara yaitu Perancis, Kanada, Amerika Serikat dan Rusia (dahulu Uni Soviet) pada tahun 1979. Misi program Cospas-Sarsat adalah untuk memberikan bantuan pelaksanaan SAR dengan menyediakan distress alert dan data lokasi secara akurat, terukur serta dapat dipercaya kepada seluruh komonitas internasional. Tujuannya agar dikuranginya sebanyak mungkin keterlambatan dalam melokasi suatu distress alert sehingga operasi akan berdampak besar dalam peningkangkatan probabilitas keselamatan korban. Keempat negara tersebut mengemabangkan suatu sistem satelit yang mampu mendeteksi beacon pada frekuensi 121,5/243 MHz dan 406 MHz. Emergency Position-Indicating Radio Beacon (EPIRB)adalah beacon 406 Mhz untuk pelayaran merupakan elemen dari Global Maritime Distress Safety System (GMDSS) yang didesain beroperasi dengan sistem the Cospas-Sarsat. EPIRB sekerang menjadi persyaratan dalam konvensi internasioal bagi kapal Safety of Life at Sea (SOLAS). Mulai 1 Februari 2009, sistem Cospas-Sarsat hanya akan memproses beacon pada frekuensi 406 MHz. Cospas merupakan akronim dari Cosmicheskaya Sistyema Poiska Avariynich Sudov sedangkan Sarsat merupakan akronim dari Search And Rescue Satellite-Aided Tracking
Prinsip Kerja
Ketika beacon aktif, sinyal akan diterima oleh satelit selanjutnya diteruskan ke Local User Terminal (LUT) untuk diproses seperti penentuan posisi, encoded data dan lain-lainnya. Selanjutnya data ini diteruskan ke Mission Control Cetre (MCC) di manage. Bila posisi tersebut diluar wilayahnya akan dikirim ke MCC yang bersangkutan, bila di dalam wilayahnya makan akan diteruskan ke instansi yang bertanggung jawab.
8. Navtex ,adalah sistem otomatis internasional untuk langsung mendistribusikan peringatan maritim navigasi, ramalan cuaca dan peringatan, pencarian dan penyelamatan pemberitahuan dan informasi yang serupa dengan kapal. A, rendah-biaya kecil dan mandiri "pintar" pencetakan radio penerima dipasang di jembatan, atau tempat dari mana kapal yang berlayar, dan memeriksa setiap pesan yang masuk untuk melihat apakah telah diterima selama transmisi sebelumnya, atau jika itu adalah kategori tidak tertarik untuk menguasai kapal. Frekuensi transmisi pesan ini adalah 518 kHz dalam bahasa Inggris, sementara 490 kHz digunakan untuk menyiarkan dalam bahasa lokal.
Pesan dikodekan dengan kode sundulan diidentifikasi oleh menggunakan alfabet untuk mewakili stasiun penyiaran, jenis pesan, dan diikuti oleh dua angka yang menunjukkan nomor urut pesan.
9. Search and Rescue Transponder (SART) perangkat yang digunakan untuk menemukan kelangsungan hidup kerajinan atau pembuluh tertekan dengan menciptakan serangkaian titik pada layar radar 3 cm kapal menyelamatkan itu. Jangkauan deteksi antara perangkat ini dan kapal, tergantung pada ketinggian radar tiang kapal dan ketinggian SART, biasanya sekitar 15 km (8 mil laut). Perhatikan bahwa radar laut tidak dapat mendeteksi SART bahkan dalam jarak ini, jika pengaturan radar tidak dioptimalkan untuk deteksi SART.
Setelah terdeteksi oleh radar, SART yang akan menghasilkan indikasi visual dan aural.
10. Radio GMDSS Digital Selective Calling (DSC) pada MF, HF dan VHF radio maritim sebagai bagian dari sistem GMDSS. DSC terutama ditujukan untuk memulai kapal-ke-kapal, kapal-ke-pantai dan pantai-ke-kapal telepon radio dan MF / HF radiotelex panggilan. Panggilan DSC juga dapat dibuat untuk stasiun individu, kelompok stasiun, atau "semua stasiun" dalam jangkauan seseorang. Setiap kapal DSC-dilengkapi, stasiun pantai dan kelompok ditugaskan unik 9-digit Maritime Mobile Service Identity.
Alert distress DSC, yang terdiri dari sebuah pesan marabahaya terformat, digunakan untuk memulai komunikasi darurat dengan kapal dan pusat koordinasi penyelamatan. DSC dimaksudkan untuk menghilangkan kebutuhan bagi orang-orang di jembatan kapal atau di pantai untuk terus menjaga penerima radio pada saluran radio suara, termasuk saluran VHF 16 (156,8 MHz) dan 2182 kHz sekarang digunakan untuk marabahaya, keselamatan dan panggilan. Sebuah arloji mendengarkan kapal kapal GMDSS dilengkapi pada 2182 kHz
11. Sextans adalah konstelasi khatulistiwa minor yang diperkenalkan pada abad ke-17 oleh Johannes Hevelius. Namanya adalah Latin untuk sekstan astronomi, instrumen yang Hevelius sering melakukan penggunaan dalam pengamatannya Dalam, Dunia Pelayaran di gunakan untuk menentukan Posisi Kapal Artikel Baru Menghitung ketingaian Benda Angkasa Dan azimutnya.

12. LORAN (LOng RAnge Navigation[1]) adalah sistem navigasi radio terestrial menggunakan frekuensi rendah pemancar radio yang menggunakan beberapa pemancar ( multilateration ) untuk menentukan lokasi dan / atau kecepatan penerima . Versi saat ini dari LORAN umum digunakan adalah LORAN - C , yang beroperasi di bagian frekuensi rendah dari spektrum EM 90-110 kHz . , Terutama untuk melayani sebagai cadangan untuk GPS dan metode navigasi GNSS systemsThe lain yang disediakan oleh LORAN didasarkan pada prinsip perbedaan waktu antara penerimaan sinyal dari sepasang pemancar radio . [ 3 ] A diberikan konstan perbedaan waktu antara sinyal dari dua stasiun dapat diwakili oleh garis hiperbolik posisi ( LOP ) . Jika posisi dua stasiun disinkronkan diketahui , maka posisi penerima dapat ditentukan sebagai suatu tempat pada kurva hiperbolik tertentu di mana perbedaan waktu antara sinyal yang diterima adalah konstan . Dalam kondisi ideal, hal ini secara proporsional setara dengan perbedaan jarak dari receiver ke masing-masing dari dua stasiun .
Dengan sendirinya , dengan hanya dua stasiun , posisi 2 dimensi penerima tidak dapat diperbaiki . Sebuah aplikasi kedua prinsip yang sama harus digunakan , didasarkan pada perbedaan waktu dari sepasang yang berbeda dari stasiun . Dalam prakteknya , salah satu stasiun dalam pasangan kedua mungkin juga - dan sering -in adalah pasangan pertama . Dengan menentukan persimpangan dua kurva hiperbolik diidentifikasi oleh penerapan metode ini , memperbaiki geografis dapat ditentukan .
13. Nautical publications istilah teknis digunakan di kalangan maritim menggambarkan satu set publikasi, umumnya diterbitkan oleh pemerintah pusat, untuk digunakan dalam navigasi yang aman kapal, perahu, dan kapal serupa.
semua buku buku navigasi yg berhubungan dengan daerah yg akan di layari harus ada di atas kapal sebagai panduan bagi para navigator. agar terciptanya pelayaran yg aman/safe navigation
14. Marine VHF radio diinstal pada semua kapal besar dan kapal kecil yang paling bermotor . Hal ini digunakan untuk berbagai tujuan , termasuk memanggil tim penyelamat dan berkomunikasi dengan pelabuhan , kunci , jembatan dan marina , dan beroperasi di rentang frekuensi VHF , antara 156-174 MHz . Meskipun banyak digunakan untuk menghindari tabrakan , penggunaannya untuk tujuan ini adalah perdebatan dan sangat tidak dianjurkan oleh beberapa negara , Satu set VHF laut merupakan pemancar dan penerima gabungan dan hanya beroperasi pada standar , frekuensi internasional dikenal sebagai saluran . Saluran 16 ( 156,8 MHz ) adalah panggilan internasional dan distress
VHF Marine kebanyakan menggunakan " simplex " transmisi , dimana komunikasi hanya dapat terjadi dalam satu arah pada satu waktu . Sebuah tombol transmit di set atau mikrofon menentukan apakah itu beroperasi sebagai pemancar atau penerima . Mayoritas saluran Namun , yang dikhususkan untuk " duplex " transmisi saluran di mana komunikasi dapat terjadi di kedua arah secara bersamaan [ 3 ] . Setiap channel duplex memiliki dua tugas frekuensi . Hal ini terutama karena , pada hari-hari sebelum ponsel dan satcomms menjadi luas , saluran dupleks dapat digunakan untuk menempatkan panggilan pada sistem telepon umum untuk biaya melalui operator laut . Fasilitas ini masih tersedia di beberapa daerah , meskipun penggunaannya sebagian besar telah mati . Di perairan AS , Marinir radio VHF juga dapat menerima siaran radio cuaca , di mana mereka yang tersedia , pada hanya menerima saluran WX1 , wx2 , dll
13. Inmarsat-C is a two-way,  layanan paket data yang dioperasikan oleh perusahaan telekomunikasi Inmarsat. Layanan ini telah disetujui untuk digunakan di bawah Distress Global Maritim dan Keselamatan System (GMDSS), memenuhi persyaratan untuk Keamanan Kapal Sistem Alert (SSAS) yang didefinisikan oleh Marine Organization (IMO) dan layanan yang paling banyak digunakan dalam Sistem Pemantauan Kapal nelayan (VMS).
Layanan ini menawarkan transfer data, e-mail, SMS, panggilan kru, teleks, pemantauan jarak jauh, pelacakan (pelaporan posisi); grafik dan informasi cuaca, informasi maritim keselamatan (MSI), keamanan maritim, GMDSS, dan SafetyNet dan FleetNET jasa.
Layanan ini dioperasikan melalui Inmarsat-C Transceiver atau daya yang lebih rendah mini-C Transceiver. Kedua korban dan disetujui untuk layanan service yang sama yang tersedia untuk maritim, tanah mobile dan aeronautical digunakan.
14. The Automatic Identification System (AIS)adalah jarak pendek sistem pelacakan pesisir digunakan pada kapal dan dengan Lalu Lintas Kapal Jasa ( VTS ) untuk mengidentifikasi dan menemukan kapal oleh elektronik pertukaran data dengan kapal lain di dekatnya dan stasiun VTS . Informasi seperti identifikasi yang unik , posisi , arah dan kecepatan dapat ditampilkan pada layar atau ECDIS . AIS dimaksudkan untuk membantu petugas watchstanding kapal dan memungkinkan pihak berwenang maritim untuk melacak dan memantau pergerakan kapal , dan mengintegrasikan VHF sistem transceiver standar seperti penerima LORAN - C atau Global Positioning System , dengan sensor navigasi elektronik lainnya , seperti gyrocompass atau tingkat indikator gilirannya .
( IMO ) Konvensi Internasional Organisasi Maritim Internasional untuk Keselamatan Jiwa di Laut ( SOLAS ) membutuhkan AIS untuk dipasang di atas kapal voyaging internasional dengan tonase kotor ( GT ) dari 300 atau lebih ton , dan semua kapal penumpang terlepas dari ukuran . Diperkirakan bahwa lebih dari 40.000 kapal saat ini membawa kelas AIS peralatan A . [ Rujukan? ]
Kapal luar AIS jangkauan radio dapat dilacak dengan sistem Long Range Identifikasi dan Pelacakan dengan transmisi kurang sering
15. Binoarculs, teropong atau teleskop teropong adalah sepasang teleskop identik atau cermin - simetris dipasang side - by-side dan selaras untuk menunjuk secara akurat ke arah yang sama , memungkinkan pengunjung untuk menggunakan kedua mata dengan visi teropong saat melihat obyek yang jauh . Sebagian besar ukuran yang akan diselenggarakan dengan menggunakan kedua tangan , meskipun ada jenis jauh lebih besar . Kecil , teropong daya rendah untuk digunakan di acara-acara kinerja dikenal sebagai kacamata opera ( lihat di bawah ) . Banyak singkatan berbeda yang digunakan untuk teropong , termasuk gelas dan sampah
Tidak seperti teleskop monokuler , teropong memberikan pengguna gambar tiga dimensi : dua pandangan , disajikan dari sudut pandang yang sedikit berbeda untuk setiap mata pemirsa , menghasilkan tampilan yang digabung dengan persepsi kedalaman . Tidak perlu untuk menutup atau menghalangi satu mata untuk menghindari kebingungan , seperti biasa dengan teleskop monokuler . Penggunaan kedua mata juga secara signifikan meningkatkan ketajaman visual yang dirasakan , bahkan pada jarak di mana persepsi kedalaman tidak jelas (seperti ketika melihat obyek astronomi ) .
16. Echo sounder adalah teknik menggunakan pulsa suara diarahkan dari permukaan atau dari kapal selam secara vertikal ke bawah untuk mengukur jarak ke bawah melalui gelombang suara . Echo terdengar juga dapat merujuk kepada hydroacoustic "echo sounder " didefinisikan sebagai suara aktif dalam air ( sonar ) , Jarak diukur dengan mengalikan setengah waktu dari pulsa keluar sinyal untuk kembalinya dengan kecepatan suara di dalam air , yang kira-kira 1,5 kilometer per detik . Echo terdengar secara efektif aplikasi tujuan khusus dari sonar yang digunakan untuk menemukan bottom.As serta bantuan untuk navigasi ( sebagian besar kapal yang lebih besar akan memiliki setidaknya sounder kedalaman sederhana ) , echo terdengar umumnya digunakan untuk memancing . Variasi elevasi sering mewakili tempat di mana ikan berkumpul . Sekolah ikan juga akan mendaftar. Kebanyakan memetakan kedalaman laut menggunakan speed suara rata-rata atau standar. Dimana akurasi yang lebih besar diperlukan rata-rata dan bahkan standar musiman dapat diterapkan ke daerah laut . Untuk kedalaman akurasi yang tinggi , biasanya terbatas pada tujuan khusus atau survei ilmiah , sensor mungkin diturunkan untuk mengamati faktor-faktor ( suhu, tekanan dan salinitas ) digunakan untuk menghitung kecepatan suara dan dengan demikian menentukan kecepatan suara aktual dalam kolom air lokal
Dari rangkuman di atas seperti telegraf saat ini sudah tidak di gunakan lagi. dan mengenai inmarsat masi ada inmarsat A dan M yg biasa di gunakan. biasanya di kapal mengunakan 2 system inmarsat A dan C karena biaya dan cost serta system lebih mudah. dalam pengiriman fax, email dan call. perangkat navigasi yg traditional pun masi banyak yg belum termasuk, seperti topdal  merka, dan ssebagainya.ini hanya sebagian semoga bermanfaat buat calon pelaut atau pelautnya sendiri yg ingin mengingat lagi alat alat navigasi di atas kapal.





1 comment:

GUBERNUR SUMUT JANJILAH PADA RAKYAT SUMUT HARGA RUMAH DI BAWAH 50 JUTA

JIKA CALON GUBERNUR SUMUT PERIODE 2019 S.D 2024 BERJANJI ADA RUMAH HARGA DIBAWAH 50 JUTA DAN DP 0% MAKA DENGAN SUKA RELA SAYA BERJANJI ...